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Least squares problems, optimization formulation, necessary and sufficient conditions for optimality,
solution using geometrical intuition and calculus.

1 Least squares estimation

Consider the equation Ax = b, where A ∈ Rm×n. The approach we will describe works for any A,
but for now, imagine a case where m > n (A is a tall matrix), and we are in the estimation setup;
there is no x satisfying Ax = b, so we would like to find an approximate solution Ax̂ ≈ b.

Define the residual r := Ax − b. As mentioned above, we assume there is no way to make r zero.
Instead, we try to make r small. In the least squares problems, we do this by making ∥r∥ as small as
possible, where ∥ · ∥ is the standard Euclidean norm. There are other valid ways of making r small,
for example by using a different norm. This will generally produce different answers depending on
the choice of norm. “Least squares” refers exclusively to the case where we use the Euclidean norm.
We will use optimization notation to write the problem. If we let x̂ be the optimal x and we let
r̂ := Ax̂− b be the associated optimal residual, we can write least squares in two ways:

∥r̂∥2 = minimize
x∈Rn

∥Ax− b∥2 or x̂ ∈ argmin
x∈Rn

∥Ax− b∥2

On the left, “minimize” finds the smallest possible squared residual. The reason for squaring it is
that it removes the square root associated with the norm so it’s a bit neater. It makes no difference;
if the residual is as small as possible, so is the squared residual. On the right, “arg min” finds an
x that achieves the minimum value. In general, there could be many x̂ that achieve the minimal
residual, so the argmin is a set. Both formulations solve the same problem.

1.1 Geometric intuition

Another way to put this is that we want to find the vector b̂ ∈ range(A) that is as close to b as
possible (∥b̂− b∥ as small as possible). In optimization notation, we would write this as:

minimize
x∈Rn

∥Ax− b∥2 = minimize
b̂∈ range(A)

∥b̂− b∥2

Note that we changed x ∈ Rn to b̂ ∈ range(A). Geometrically, this looks like Fig. 1. Intuitively,
the optimal residual r̂ := b̂ − b = Ax̂ − b should be orthogonal to every vector in range(A). In
other words, r̂ ∈ range(A)⊥, so r̂TAx = 0 for all x ∈ Rn. This implies that r̂TA = 0. Substituting
r̂ = Ax̂− b and taking the transpose, we obtain the normal equations:

AT(Ax̂− b) = 0, or equivalently, ATAx̂ = ATb. (1)
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Figure 1: Geometric intuition for minimizing ∥Ax− b∥: we are looking for the point in
range(A) that is closest to b. This happens when r̂ ∈ range(A)⊥.

1.2 Calculus intuition

Given a continuously differentiable function f : Rn → R, then at a minimum point, it must be the
case that ∂f

∂xi
= 0 for all i = 1, . . . , n. If that were not the case, then we could change xi by a small

amount and f would get smaller, contradicting the minimality of f . Another way of putting this is
that the gradient of f should be zero. The gradient is the vector of all partial derivatives:

∇f :=


∂f
∂x1

...
∂f
∂xn


Lemma 1.1. The gradient of a linear or quadratic function of x are as follows.

• For any c ∈ Rn, we have ∇⟨c, x⟩ = ∇(cTx) = c.

• For any A ∈ Rn×n, we have ∇⟨Ax, x⟩ = ∇xTAx = (A+AT)x.

Proof. For an inner product f(x) = ⟨c, x⟩ = cTx:

∂

∂xk
⟨c, x⟩ = ∂

∂xk

n∑
i=1

cixi = ck. Therefore, ∇⟨c, x⟩ = ∇(cTx) = c

For a quadratic form f(x) = xTAx = ⟨x,Ax⟩, we have

∂

∂xk
xTAx =

∂

∂xk

n∑
i=1

n∑
j=1

aijxixj =

n∑
i=1

n∑
j=1

aij

(
∂xi
∂xk

xj +
∂xj
∂xk

xi

)
=

n∑
j=1

akjxj +

n∑
i=1

aikxi.

Therefore, ∇(xTAx) = (A + AT)x. Note that in the case where n = 1 (A is a scalar), we recover
the familiar expression d

dxax
2 = 2ax. ■

Using Lemma 1.1, the gradient of the squared norm of the residual is given by

∇∥Ax− b∥2 = ∇(Ax− b)T(Ax− b)

= ∇
(
xT(ATA)x− 2bTAx+ bTb

)
= 2(ATA)x− 2ATb

If the gradient at x = x̂ is zero, we immediately recover the normal equations: ATAx̂ = ATb.
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1.3 Formal proof

The calculus approach and the geometric intuition only provide necessary conditions for optimality:
“If x̂ is an optimal point, then the normal equations hold”. It turns out the normal equations are
sufficient as well: “If x̂ satisfies the normal equation, then x̂ is an optimal point”. But we did not
prove it! Setting the derivative equal to zero proves necessity, but not sufficiency. This is because
a zero derivative means we have an extremal point, which could be a maximum, a minimum, or a
saddle point. All minima have a zero derivative, but not all zero-derivative points are minima.

Here is a more formal statement and proof of necessity and sufficiency.

Theorem 1.2. Suppose A ∈ Rm×n and b ∈ Rm. The following statements are equivalent.

(i) x̂ ∈ argminx∈Rn ∥Ax− b∥2. In other words, ∥Ax̂− b∥ ≤ ∥Ax− b∥ for all x ∈ Rn.

(ii) x̂ satisfies the normal equations: ATAx̂ = ATb.

Proof. Suppose Item (ii) does not hold. Then AT(Ax̂ − b) ̸= 0. so there must exist some z ∈ Rn

such that zTAT(Ax̂− b) ̸= 0. In other words, ⟨Az,Ax̂− b⟩ ≠ 0. Define the point

x̃ := x̂− ⟨Az,Ax̂− b⟩
∥Az∥2

z.

We can divide by ∥Az∥ in the definition of x̃ since Az ̸= 0. This must be the case because otherwise
we would have ⟨Az,Ax̂− b⟩ = 0. Consider using x̃ instead of x̂ now:

∥Ax̃− b∥2 =
∥∥∥Ax̂− b− ⟨Az,Ax̂−b⟩

∥Az∥2 Az
∥∥∥2

= ∥Ax̂− b∥2 +
∥∥∥ ⟨Az,Ax̂−b⟩

∥Az∥2 Az
∥∥∥2 − 2

〈
Ax̂− b, ⟨Az,Ax̂−b⟩

∥Az∥2 Az
〉

= ∥Ax̂− b∥2 + ⟨Az,Ax̂−b⟩2
∥Az∥2 − 2 ⟨Az,Ax̂−b⟩2

∥Az∥2

= ∥Ax̂− b∥2 − ⟨Az,Ax̂−b⟩2
∥Az∥2

< ∥Ax̂− b∥2.

We showed that x̃ achieves a strictly better residual than x̂, so x̂ cannot be the argmin, and (i) does
not hold. We just proved that ¬(ii) =⇒ ¬(i). Therefore, (i) =⇒ (ii). This proves necessity in yet
another way (we already showed this using an orthogonality argument and calculus argument).

Now let’s prove sufficiency. Suppose that Item (ii) holds. We will prove that no matter what x
is chosen, we will have ∥Ax̂ − b∥ ≤ ∥Ax − b∥, which means that x̂ is the argmin. Expanding the
residual,

∥Ax− b∥2 = ∥(Ax̂− b) + (Ax−Ax̂)∥2

= ∥Ax̂− b∥2 + ∥A(x− x̂)∥2 + 2⟨Ax̂− b, Ax−Ax̂⟩
= ∥Ax̂− b∥2 + ∥A(x− x̂)∥2

≥ ∥Ax̂− b∥2.

The inner product in the second line vanishes because ⟨Ax̂− b, Ax−Ax̂⟩ = ⟨AT(Ax̂− b), x− x̂⟩ = 0.
Therefore, (ii) =⇒ (i), which completes the proof. ■
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Figure 2: Geometric intuition for sufficiency. If the normal equations are satisfied, i.e. if
r̂ ∈ range(A)⊥, then any other point in range(A) will be farther from b than the chosen
point because ∥r∥2 = ∥r̂∥2 + ∥A(x− x̂)∥2 ≥ ∥r̂∥2 (Pythagorean theorem).

1.4 Full rank case

When we looked at solutions of Ax = b, we saw that when A has full column rank, any solutions are
unique. The same is true of least squares problem, except we don’t have to worry about existence,
since least squares problems always have a solution.

Lemma 1.3. Suppose A ∈ Rm×n. Then null(A) = null(ATA).

Proof. Suppose x ∈ null(A). Then, Ax = 0 =⇒ ATAx = 0 =⇒ x ∈ null(ATA). Therefore,
null(A) ⊆ null(ATA). Conversely, suppose x ∈ null(ATA). Then,

ATAx = 0 =⇒ xTATAx = 0 =⇒ ∥Ax∥2 = 0 =⇒ Ax = 0 =⇒ x ∈ null(A).

Therefore, null(ATA) ⊆ null(A). This completes the proof. ■

Corollary 1.4. Suppose A ∈ Rm×n and b ∈ Rm. If A has full column rank, then the least squares
problem x̂ ∈ argminx∈Rn ∥Ax− b∥2 has a unique solution, and it is given by x̂ = (ATA)−1ATb.

Proof. If A has full column rank, then null(A) = {0}. By Lemma 1.3, null(ATA) = {0} as well, so
ATA has full column rank. This matrix is square and full rank, so it is invertible. Therefore, the
normal equations ATAx = ATb have a unique solution, and it is given by (ATA)−1ATb. ■

When A has full column rank, the matrix A† := (ATA)−1AT is called the pseudoinverse of A (also
known as the Moore–Penrose pseudoinverse). There is a more general definition that holds for non-
full-rank A; we’ll see this later. In the full column rank case, we have the following properties:

• If A ∈ Rm×n, then A† ∈ Rn×m. So A† has the same shape as AT.

• A†A = In (the n× n identity matrix). In other words, A† is a left-inverse of A.

• AA† is the projection matrix that maps a vector onto range(A). In other words, AA†b is the
vector in range(A) that is closest to b. Mathematically,

(AA†)b = projrange(A)b = argmin
z∈range(A)

∥z − b∥.

• If A is square and full rank (invertible), then A† = A−1.
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2 Linear regression

The most popular example of least squares is linear regression. For this example, suppose we want
to estimate the age of maple trees in a particular forest based on the circumferences of their trunks.
Finding the true age of a tree is an invasive and time-consuming procedure, so we only have data
for N = 10 trees.

Our data consists of points (xi, yi) for i = 1, . . . , N . Here, xi and yi are the circumference and age
of tree i, respectively. The data and a scatter plot are shown in Fig. 3.

xi (inches) yi (years)

18.1 83
8.0 42

16.8 79
2.8 16
3.9 24

12.7 73
11.5 60
9.5 44
8.0 47
13.2 67
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Figure 3: Scatter plot of tree data

We want to predict the age of a tree based on its circumference. Based on the data and our intuition
about how trees grow, we suspect a formula of the form

y ≈ mx+ b

should work, where m and b are the slope and intercept of a line of best fit. One way to formulate
this is as a least-squares problem. So the task is to find m and b so that we

minimize
m,b

N∑
i=1

(mxi + b− yi)
2 .

Our variables are m and b. This is a least squares problem to minimizex ∥Az − y∥2, where

A =

x1 1
...

...
xN 1

 , z =

[
m
b

]
, y =

 y1
...
yN

 .

This is a least squares problem where A ∈ RN×2 has full column rank. The normal equations are
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ATAẑ = ATy. Let’s divide both sides by N (does not change anything), and evaluate:

1

N
ATA =

1

N

x1 1
...

...
xN 1


T x1 1

...
...

xN 1

 =

[
1
N

∑N
i=1 x

2
i

1
N

∑N
i=1 xi

1
N

∑N
i=1 xi 1

]
=

[
x2 x
x 1

]
,

1

N
ATy =

1

N

x1 1
...

...
xN 1


T  y1

...
yN

 =

[
1
N

∑N
i=1 xiyi

1
N

∑N
i=1 yi

]
=

[
xy
y

]
,

where we used the notation x as a short-hand to denote averaging. The normal equations are[
x2 x
x 1

] [
m̂

b̂

]
=

[
xy
y

]
. With numerical values:

[
131.893 10.45
10.45 1

] [
m̂

b̂

]
=

[
659.94
53.5

]
.

This is always a 2 × 2 system of equations, no matter how many data points N we have! Solving
these equations, we obtain m̂ = 4.445 and b̂ = 7.047. We can plot the line y = m̂x+ b̂ and we get
the following:
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Figure 4: Scatter plot of tree data with line of best fit.

The line of best fit minimizes the sum of the squares of the residuals, which are the vertical lines
between each data point and the line of best fit shown in Fig. 4. This “best fit” line is exactly the
same as what is produced if you use the “linear trendline” function in Excel; it’s nothing more than
least squares.

Degenerate cases. ATA is non-invertible precisely when the columns are linearly dependent,
which happens when x̄ = x1 = · · · = xN . In this case, each point has the form (x̄, yi) (they’re on
the same vertical line). Here, the normal equations have infinitely many solutions; the line of best
fit is not unique. If ȳ = y1 = · · · = yN instead, the data lie on a horizontal line. Here, y is a multiple
of the vector of all 1’s, i.e. y ∈ range(A), so we get an exact solution (the line passes through all
the points and the residual is zero).
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